13427980436
联系方式
  • 公司: 深圳方老师数学家教名师高级教师
  • 地址: 深圳福田区百花园紫荆阁
  • 联系: 方老师
  • 手机: 13427980436
  • 邮箱: 365808458@qq.com
  •  
  • 本站共被浏览过 175372 次

产品信息

更多...
价 格:面议

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。

直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。

正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。

基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。

数学教育图书

数学教育图书

在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。

在不同的时期在不同的文化和国家中,数学教育试图达到不同的目标。

数学教育图书

数学教育图书

这些目标包括:

教授给所有学生的数字技巧。

教授给大部分学生的实用数学(算术,基础代数,平面和立体几何,三角学),使得他们有能力从事贸易或手工业。

早期的抽象代数概念教育(例如集合和函数)。

选择性的数学领域的教育(例如欧式几何)作为公理化体系的实例和演绎推理的一个模型。

选择性的数学领域的教育(例如微积分)作为现代社会的智力成就的一个实例。

教授给希望以科学为职业的学生的高等数学。

数学教育的方式和变化的目标一致。